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Methylmercury (MeHg) exposure through fish consumption is a worldwide health concern. Saltwater
fish account for most dietary MeHg exposure in the general U.S. population, but less is known about
seasonal variations in MeHg exposure and fish consumption among millions of freshwater anglers. This
longitudinal study examined associations between MeHg exposure and fish consumption in a rural, low-
income population relying on a freshwater reservoir (Oklahoma, USA) for recreational and subsistence
fishing. We interviewed 151 participants, primarily anglers and their families, seasonally for one year
using 90-day recall food frequency questionnaires to assess general and species-specific fish consump-
tion, and tested hair biomarker samples for total mercury (THghair). Mean THghair was 0.27 μg/g (n¼595,
range: 0.0044–3.1 μg/g), with 4% of participants above U.S. EPA's guideline for women of childbearing
age and children. Mean fish consumption was 58 g/d (95% CI: 49–67 g/d), within the range previously
reported for recreational freshwater anglers and above the national average. Unlike the general U.S.
population, freshwater species contributed the majority of fish consumption (69%) and dietary Hg
exposure (60%) among participants, despite relatively low THg in local fish. THghair increased with fish
consumption, age, and education, and was higher among male participants and the lowest in winter. Our
results suggest that future studies of anglers should consider seasonality in fish consumption and MeHg
exposure and include household members who share their catch. Efforts to evaluate benefits of reducing
Hg emissions should consider dietary patterns among consumers of fish from local freshwater bodies.
& 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Mercury (Hg), especially its methylated form, methylmercury
(MeHg), is associated with neurotoxicity in humans (Harada,
1995), with the most severe effects in fetuses and children
(Grandjean et al., 1999; Karagas et al., 2012). In adults, low levels
of MeHg exposure have been associated with cardiovascular
disease in some studies (Choi et al., 2009; Virtanen et al., 2005)
but not others (Mozaffarian et al., 2011), and with neurological
effects, such as deficits in motor or cognitive functions (Lebel et al.,
1998).

The primary non-occupational route of human MeHg exposure
is fish/shellfish consumption (Mahaffey et al., 2004), and
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thousands of mercury-related fish consumption advisories have
been issued in the U.S. (U.S. EPA, 2004). Although commercial
saltwater species account for the majority of fish consumption and
dietary MeHg exposure in the general U.S. population (Carrington
et al., 2004) and other populations worldwide (Davidson et al.,
2008), locally-caught freshwater fish may contribute substantially
to dietary MeHg intake in inland, rural communities (Turyk et al.,
2012). Of 27 million U.S. anglers, 83% fished in freshwater lakes,
reservoirs, or ponds, and freshwater fishing accounted for 81% of
all fishing trips in 2011 (U.S. FWS, 2013). Despite the popularity of
freshwater fishing, few studies have quantified Hg exposure in
freshwater anglers, and the extent of seasonal variability in the
quantities and types of fish consumed is poorly characterized.
Furthermore, studies of anglers often focus on men and do not
include women and children in their families sharing their catch,
despite greater susceptibility of children and fetuses to detrimen-
tal effects of MeHg and other pollutants. Low-income and minority
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populations are often at elevated risk of contaminant exposure
through consumption of self-caught fish because of their greater
reliance on local resources and closer proximity to pollution
sources (Burger and Gochfeld, 2011).

We assessed the influence of fishing behaviors, local fish
consumption, and season on MeHg exposure in a rural, low-
income population through a longitudinal study of primarily
freshwater anglers and their families. This community-based
participatory research (CBPR) project, developed collaboratively
by university researchers and community partners, was designed
to address community concerns about potential mercury exposure
among recreational and subsistence anglers in Grand Lake (Okla-
homa, USA; Fig. S1), due to the presence of six coal-fired power
plants within 100 km of the lake. Our goals were (1) to assess
overall MeHg exposure and the contribution of locally-caught
freshwater fish consumption among anglers and their families
who consume fish from the watershed; (2) to evaluate seasonal
variability in fish consumption rates, diet composition, and MeHg
exposure; and (3) to examine associations in MeHg exposure and
fish consumption among family members. Understanding patterns
of fish consumption and Hg exposure is important for identifying
populations at risk of elevated Hg exposure and assessing benefits
of Hg emission reductions.
2. Materials and methods

2.1. Recruitment of participants

We recruited 151 self-identified consumers (Z14 years old) of
fish from the Grand Lake watershed (Oklahoma, USA), trying to
include more individuals with high rates of fish consumption.
Participants were recruited in person at events (e.g., fishing
tournaments, health fairs, fish fries, and meetings of fishing-
related organizations) and through personal contact with study
team members.

To explore seasonal patterns in MeHg exposure and fish
consumption, we aimed to interview each participant five times,
at approximately three-month intervals over the course of one
year. Target dates for follow-up visits were generated for each
participant based on the date of their first interview, with an
acceptable window of 71.5 months around each target date.
During each interview, participants completed a 90-day recall
food frequency questionnaire (FFQ) and provided a hair sample
for Hg analysis. Overall, 611 FFQs (80% based on the initial sample
size) and 599 hair samples were collected between July 2010 and
March 2013, with only eight participants officially withdrawing.
We recorded relationships among spouses and other household
members to compare their consumption patterns and Hg expo-
sure. Thirty-three pairs of spouses and domestic partners partici-
pated in our study.

Informed consent was obtained from every participant at the
time of enrollment. All study materials and research protocols
relating to human subjects were approved by the Office of Human
Research Administration at Harvard School of Public Health.

2.2. Biomarker sampling

Hair was selected as a biomarker because it is a commonly-
used biomarker (Grandjean et al., 2002; McDowell et al., 2004) for
capturing MeHg exposure over weeks or months (NRC, 2000) and
is less invasive and easier to sample than blood. Since hair grows
at a rate of approximately 1 cm/month (WHO, 1990), and it takes
about one month for hair to emerge at the skin surface (NRC,
2000), the first 2 cm of hair from the scalp roughly corresponds to
a recall period 1–3 months prior to sample collection.
A small bundle of hair, approximately 0.5 cm in diameter, was
collected at each interview by a study team member, cut close to
the scalp with scissors that were wiped with alcohol wipes after
each use. The hair sample was tied with dental floss to indicate the
end closest to the scalp. Within three months of collection,
participants received a report-back letter with the Hg concentra-
tion in each hair sample they provided that graphically depicted
their hair Hg level relative to three benchmarks: median hair Hg
level in adult women in the US (0.19 μg/g; McDowell et al., 2004),
U.S. EPA's guideline for women of childbearing age (1.1 μg/g), and
hair Hg level associated with cardiovascular effects in middle-aged
men in some studies (2 μg/g, Choi et al., 2009; Virtanen et al.,
2005). The letter encouraged participants concerned about their
result to talk with their doctor or a study team member. Additional
information was also provided about sources of Hg into the
environment, Hg levels in fish, and health effects associated
with Hg.

2.3. Food frequency questionnaire

Our FFQ (available at: http://grandlakemercurystudy.org/
images/GLWMS_FFQ.pdf) was based on an FFQ used by Lincoln
et al. (2011), which was modified from a semiquantitative FFQ for
the Nurses′ Health Study (Hu et al., 2002). Our FFQ asked about
general and species-specific fish/shellfish consumption frequen-
cies over the previous three months in 8 categories: never, once in
last three months, once a month, two or three times a month, once
a week, two or three times a week, four to six times a week, and
once a day or more. We included fish species commonly caught
from the Grand Lake watershed and commonly-consumed non-
local, primarily saltwater, fish. In addition, we asked about both
typical fish portion size and number of portions at a typical fish
meal, after participants viewed a plaster model depicting filets of
four different portion sizes (2, 4, 6, and 8 oz). The FFQ also
included demographic questions and questions on fishing and
sharing and storage of fish. The FFQ was reviewed and tested by
members of a community advisory board and multiple focus
groups that encompassed a range of ethnicities before adminis-
tration to participants.

To improve recall accuracy, participants received a fish con-
sumption log at their first four visits. The log included a blank
calendar for recording each fish meal, pictures of fish species, a full
scale photograph of the portion model, and a map of the
watershed. 73% of participants reported using their log between
visits.

2.4. Hair Hg analysis

Total Hg concentration in hair (THghair) is a reasonable surro-
gate for MeHg since 80–98% of THg in hair is present as MeHg
(Mergler et al., 2007). THghair is used hereafter in this paper to
indicate THg or MeHg. The first 2 cm from the scalp-end of each
hair sample was trimmed using titanium scissors and analyzed for
THg by thermal decomposition, amalgamation and atomic absorp-
tion spectrophotometry (U.S. EPA, 2007), using a DMA-80 Direct
Mercury Analyzer (Milestone Inc., Shelton, CT). At least one
method blank and one certified reference material (CRM), GBW-
07601 (human hair powder), were tested every 10 samples.
Average recovery for the CRM was 108.2% with an RSD of 10.7%.

2.5. Fish Hg data

To calculate Hg intake from local fish, we used average fish THg
concentrations (THgfish) measured in a companion study of com-
monly-consumed fish from the Grand Lake watershed (Table S1).
MeHg was generally 490% of THg in these fish (unpublished
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data). About 1000 filet samples from Grand Lake watershed fish,
including more than 30 species, were collected from the wa-
tershed by either local volunteers or Oklahoma Department of
Wildlife Conservation and analyzed for THg on the DMA-80. For
non-local fish, we used mean THgfish from a U.S. market basket
survey (U.S. FDA, 2006).

2.6. Data analysis

FFQ results were entered into a Microsoft Access database
through a Microsoft Infopath form, which replicated the FFQ
layout. Body mass index (BMI, kg/m2) was calculated for each
participant by dividing body mass by the square of height. Fish
consumption frequency was converted into a fish consumption
rate (FCR; g/d) using the typical portion size and number of
portions reported by each participant. A general FCR was calcu-
lated based on overall reported fish consumption, and a species-
specific FCR was calculated as the sum of FCRs across all species.
Since over-reporting has been observed for species-specific con-
sumption rates (Björnberg et al., 2005), a scaling factor (SF) was
calculated to scale Hg dose according to general FCRs (Lincoln
et al., 2011):

=
−

=
∑ =SF

Species specific FCR
General FCR

FCR

General FCR (1)i
i

i

j
n

ij

i

1

where SFi is the scaling factor for participant i, and FCRij (g/d) is
the fish consumption rate of species j among a total of n species for
participant i.

Hg intake was quantified using unscaled and scaled Hg doses
(μg/kg/d), calculated as (Lincoln et al., 2011):
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in which bwi is body weight (kg) for participant i, and THgj (μg/g)
is mean THg in fish species j.

Since participants enrolled over a period of 18 months (July
2010–January 2012), we used season instead of visit date as the
index for repeated measurements. Each FFQ and hair sample was
classified according to the season to which a majority of the 91
prior days belonged. Data from two visits of two married partici-
pants were excluded from all analysis since they reported frequent
consumption (once per day) of non-local, high Hg fish during a
two-month trip outside of the study area.

We used a mixed effects regression model to analyze the
association between THghair and fish consumption, and other
potential predictors of Hg exposure (i.e., gender, age, ethnicity,
BMI, education, percent local fish consumed, season) were in-
cluded as covariates. THghair was log-transformed because its
distribution was positively skewed. Random intercepts were used
to model random effects within each participant. To control for
temporal autocorrelation over repeated visits, an AR(1) covariance
structure was applied, which was chosen over compound sym-
metry and unstructured covariance structure based on likelihood
ratio tests. We also modeled random effects within each family
using a nested mixed model. This model generated similar results
to those from the model only accounting for within-participant
correlations, but had much fewer degrees of freedom (27 vs. 139
for demographic covariates). Therefore, results were reported for
the model with participant random effects only.

THghair was modeled using one of five metrics as the main
exposure variable: general fish consumption frequency (categorical,
Model 1), general (Model 2) and species-specific (Model 3) FCR, and
unscaled (Model 4) and scaled (Model 5) Hg dose. Due to small
sample sizes in the lowest and highest consumption categories, fish
consumption frequency was regrouped into four categories: once a
month or less, 2–3 times a month, once a week, and more than once
a week.

R 3.0.1 was used to perform all statistical analysis.
3. Results

3.1. Study population

The demographics of our study cohort generally reflect the
population in the four counties surrounding Grand Lake, although
our cohort had a slightly higher proportion of men (55% vs. 50%)
and American Indians (29% vs. 16%) and a higher median age (54
vs. 41) (Table S2). On average, more people in this area (19%) live
below the poverty level than in Oklahoma (16%) or the whole U.S.
(14%). We intended to recruit additional Asian/Pacific Islanders,
given the sizable local Micronesian community, but only one of
more than 100 Micronesians we approached met our recruitment
criterion of eating local fish.

3.2. Fishing and fish consumption patterns

Many of our participants were active anglers. 79% of partici-
pants reported fishing at least once during their five visits, and
these anglers fished an average of 3.8 times per month, about
three times the national average of 16 fishing trips per year (1.3
trips per month) among freshwater anglers (U.S. FWS, 2013).
Another 14% of participants lived with a household member who
had gone fishing. For each season, over two-thirds of participants
reported fishing or living with someone who fished during
the prior three months, ranging from 69% (fall) to 83% (spring)
(Fig. S2). 77% of anglers reported sharing their catch with others,
including adults (62%) and children (38%) in their household and
people outside their household (75%). A majority (72%) of partici-
pants froze some fish to eat later. Among 33 couples or domestic
partners, 74% of men went fishing, compared to only 34% of
women.

Fish consumption rates among participants were above those
of the general U.S. population and similar to those in other studies
of recreational anglers. Most participants ate fish 2–3 times a
month (35%) or once a week (29%), and 20% ate fish at least 2–3
times a week. The mean and median general FCR among partici-
pants were 58 g/d (95% CI: 49–67 g/d) and 28 g/d, respectively.
These are within the range of mean FCRs for freshwater fish
compiled by U.S. EPA (2011) for recreational freshwater anglers,
which ranged from 5 to 70 g/d, after accounting for the portion of
local fish consumed by our participants. Our FCRs were above the
estimated FCR for the general U.S. population (mean: 22 g/d,
median: 0 g/d; includes non-consumers of fish), and lower than
for U.S. fish consumers (mean: 102 g/d, median: 70 g/d) (U.S. EPA,
2011).

Local fish contributes a majority of fish consumption and
dietary Hg among our participants. Across all visits, on average
69% of FCR consisted of local species, primarily species of catfish
(43% of total), crappie (11%) and bass (6%) (Fig. 1a). These are
consistent with species most frequently caught by Oklahoma
anglers (U.S. FWS, 2014). Based on FCRs and species-specific
THgfish (Table S1), an estimated 60% of dietary Hg was contributed
by local fish, primarily catfish species (47%). Most non-local Hg
intake came from tuna (31% of total Hg) (Fig. 1b).



Fig. 1. Species-specific contributions to (a) overall fish consumption and (b) dietary Hg intake.
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3.3. Hair Hg

Mean THg in hair (THghair) in participants was 0.27 μg/g (range:
0.0044�3.1 μg/g; Table S3). Eleven participants (7% of study
population), 10 of whom were male, had at least one THghair value
of 1.1 μg/g or above, which corresponds to U.S. EPA's reference
dose (RfD) of 0.1 μg/kg/d MeHg for children and women of child-
bearing age (Rice et al., 2003). Three participants (o2%), all of
whomwere male, had a THghair value above 2 μg/g (Fig. S3), a level
associated with cardiovascular effects in middle-aged men in some
studies (Choi et al., 2009; Virtanen et al., 2005). THghair levels for
female participants (mean: 0.18 μg/g, median: 0.12 μg/g) are lower
than those of adult women in the U.S. (mean: 0.47 μg/g, median:
0.19 μg/g; McDowell et al., 2004) and in the inland southern U.S.
(mean: 0.32 μg/g, median: 0.20 μg/g, using a blood-hair Hg con-
version factor of 250 from Mahaffey et al., 2009).

3.4. Hg dose

Estimated unscaled Hg dose (mean: 0.13 μg/kg/d, 95% CI: 0.10–
0.15 μg/kg/d, median: 0.040 μg/kg/d) in our female participants
was much higher than the average Hg intake of adult women in
the inland southern U.S. (mean: 0.023, 95% CI: 0.020–0.026 μg/kg/
d, Mahaffey et al., 2009), while the scaled Hg dose (mean:
0.052 μg/kg/d, 95% CI: 0.043–0.062 μg/kg/d, median: 0.018 μg/
kg/d) was closer to, though still above, the regional average.

Using the unscaled Hg dose, 27% of all participants (across all
visits) were above the EPA RfD for children and women of child-
bearing age (Rice et al., 2003); using the scaled Hg dose, this
percentage went down to 11%, still above the observed 4% of
participants exceeding the U.S. EPA guideline based on THghair.
Given that THghair levels in our cohort were generally lower than
those among NHANES participants, this suggests that our calcula-
tions based on FFQ results and THgfish were overestimating actual
Hg doses.

3.5. Association of hair Hg with fish consumption

Five regression models using different exposure metrics gen-
erated comparable results (Table 1): age, gender, education,
percent local fish consumed, and season were all significantly
associated with THghair, after controlling for the main effect of FCR
or Hg dose. BMI and ethnicity were not significant predictors of
THghair in any model. Age was positively associated with THghair,
with a one decade increase in age associated with ∼12% higher
THghair. Women had ∼57% lower THghair than men. Participants
who had college or post-graduate degrees had ∼45% higher THghair
than those with high school or less education. A 1% increase in
local fish consumption was associated with a ∼0.15% increase in
THghair.

As the main exposure variable in the models, fish consumption
frequency, FCR, and Hg dose were all significant predictors of
THghair. Compared to participants eating fish once a month or less,
those who ate fish once a week or more had ∼19% higher THghair. A
one ounce (28 g) per day increase in general or species-specific
fish consumption was associated with a 1.3% or 0.51%, respectively,
increase in THghair. A 0.1 μg/kg/d increase in unscaled or scaled Hg
dose was associated with a 1.7% or 3.8% increase in THghair,
respectively. Overall, the most parsimonious model used scaled
Hg dose, based on the AIC (Akaike Information Criterion) score.
3.6. Seasonal variations in hair Hg and fish consumption

Many participants showed substantial variability in THghair
over time, with differences between minimum and maximum
THghair for individual participants ranging from 0 to 2.2 μg/g
(mean¼0.19 μg/g). The relative standard deviation (RSD) for each
participant across all five visits varied from 3.4% to 93%, while 42%
of participants had an RSD 450%, regardless of THghair.

Overall, THghair was significantly (on average 13–19%) lower in
winter than in the other seasons based on regression models
(Table 1). THghair was the highest in summer, followed by fall and
spring (Fig. S4), although differences among these seasons were
not significant. While FCRs were similar in spring and summer,
FCR was significantly lower in fall than other seasons, despite
similar THghair. This discrepancy may be related to diet composi-
tion; the contribution to total fish consumption and Hg intake
from locally-caught catfish was highest in the fall and lowest in
winter (Fig. S5).



Table 1
Mixed-effects regressions of natural log-transformed hair Hg (μg/g) against fish consumption frequency, general fish consumption rate, species-specific fish consumption
rate, unscaled Hg dose, or scaled Hg dose.

Predictors Model 1 Fish
Consumption Frequency
(AICa¼1071.6)

Model 2 General Fish
Consumption
(AIC¼1075.1)

Model 3 Species-Specific
Consumption
(AIC¼1077.5)

Model 4 Unscaled Hg
Dose (AIC¼1062.8)

Model 5 Scaled Hg
Dose (AIC¼1059.1)

β-Estimate (95% CI)b β-Estimate (95% CI) β-Estimate (95% CI) β-Estimate (95% CI) β-Estimate (95% CI)

Age 0.012 (0.0040, 0.020)nn 0.013 (0.0043, 0.021)nn 0.013 (0.0044, 0.021)nn 0.013 (0.0044, 0.021)nn 0.013 (0.0043, 0.021)nn

Gender (referent¼Male)
Female �0.57 (�0.86, �0.28)nnn �0.58 (�0.87, �0.28)nnn �0.58 (�0.87, �0.28)nnn �0.58 (�0.88, �0.29)nnn �0.58 (�0.87,

�0.28)nnn

BMI (kg/m2) �0.0078 (�0.031, 0.015) �0.0077 (�0.031, 0.016) �0.0083 (�0.032, 0.015) �0.0077 (�0.031, 0.016) �0.0072 (�0.031,
0.016)

Ethnicity (referent¼White/Caucasian)c

American Indian 0.0042 (�0.33, 0.33) �0.0028 (�0.34, 0.33) �0.0066 (�0.34, 0.33) �0.0073 (�0.34, 0.33) �0.004 (�0.34, 0.33)
African American �0.77 (�2.5, 0.96) �0.83 (�2.6, 0.93) �0.82 (�2.6, 0.94) �0.82 (�2.6, 0.93) �0.82 (�2.6, 0.94)
Hispanic 0.11 (�0.57, 0.8) 0.13 (�0.57, 0.82) 0.13 (�0.57, 0.82) 0.13 (�0.57, 0.82) 0.11 (�0.58, 0.81)

Education (referent¼High school or less)
Some college �0.17 (�0.52, 0.19) �0.16 (�0.52, 0.20) �0.16 (�0.52, 0.20) �0.15 (�0.51, 0.21) �0.16 (�0.52, 0.20)
Graduated college or
more

0.43 (0.066, 0.79)n 0.45 (0.081, 0.82)n 0.45 (0.083, 0.82)n 0.46 (0.088, 0.83)n 0.45 (0.085, 0.83)n

Season (referent¼Fall)
Spring �0.014 (�0.1, 0.074) �0.0084 (�0.095, 0.079) �0.0047 (�0.091, 0.082) 0.00027 (�0.086, 0.086) �0.012 (�0.099, 0.074)
Summer �0.028 (�0.12, 0.059) �0.033 (�0.12, 0.054) �0.027 (�0.11, 0.059) �0.021 (�0.11, 0.065) �0.032 (�0.12, 0.055)
Winter �0.18 (�0.27, �0.092)nnn �0.17 (�0.25, �0.080)nnn �0.16 (�0.25,

�0.079)nnn
�0.16 (�0.25,
�0.079)nnn

�0.17 (�0.26,
�0.082)nnn

Percent local fish
consumed

0.0016 (0.00024, 0.003)n 0.0016 (0.00028, 0.003)n 0.0015 (2e�04, 0.0029)n 0.0015 (2e�04, 0.0029)n 0.0015 (0.00019,
0.0029)n

Fish Consumption Frequency (referent¼r Once a
month)

General FCR (g/d) Species-Specific
FCR (g/d)

Hg Dose (μg/kg/d) Scaled Hg Dose
(μg/kg/d)

2 or 3 times a month 0.067 (�0.041, 0.17) ^ 0.00047 (0.00011,
0.00083)n

0.00018 (0.000037,
0.00032)n

0.17 (0.046, 0.29)nn 0.38 (0.056, 0.71)n

Once a week 0.17 (0.041, 0.29)nn

More than once a week 0.21 (0.073, 0.34)nn

a AIC: Akaike Information Criterion; a smaller AIC indicates a better goodness-of-fit.
b ^: po0.1; n: po0.05; nn: po0.01; nnn po0.001.
c Asian American not included due to extremely small sample size (n¼1)
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3.7. Correlation among family members

Simple linear regressions between husbands and wives yielded
significant correlations using both weight-normalized general FCR
(adjusted R2¼0.70, po0.0001) and THghair (adjusted R2¼0.44,
po0.0001) (Table S4). Overall, THghair in husbands was 1.4 times
higher than in their wives, while they consumed 32% less fish per
unit body weight. Seasonal differences may exist for these associa-
tions, with the strongest correlations (largest adjusted R2) ob-
served in spring and summer and lowest in fall.
4. Discussion

In this longitudinal exposure study, we investigated fish con-
sumption and MeHg exposure among consumers of local fish in a
rural, low-income community, in which nearly all participants
were either freshwater anglers or lived with an angler. We found
that local fish constituted the majority of fish consumption and
dietary Hg intake in our cohort, and that a higher proportion of
local fish consumption was associated with higher THghair despite
relatively low Hg in fish from this watershed. The prevalence of
local freshwater fish consumption has been observed in other
inland regions (e.g., Gerstenberger and Eccleston, 2002), notably in
American Indian communities (Dellinger, 2004) although these are
often based on one-time assessments. Fish consumption rates
were higher than for the general population and similar to other
studies of freshwater anglers (summarized in U.S. EPA, 2011), but
lower than for fish consumers in the U.S., despite a high frequency
of fishing trips among many participants. This discrepancy may be
due to a combination of factors, including catch-and-release
behaviors, concerns about pollution (expressed by ∼30% of parti-
cipants), and a preference for other foods.

Many other lakes in Oklahoma have higher THgfish than Grand
Lake (Table S1), particularly in southeastern Oklahoma downwind
of large coal-fired power plants (CFPPs). To assess MeHg exposure
among anglers in more impacted watersheds, we combined fish
consumption patterns of our participants with THg concentrations
in fish from Lake Eufaula (Oklahoma Department of Environmen-
tal Quality, unpublished data), a commonly-fished reservoir 170
miles south of Grand Lake with 2–6 times higher THgfish. Our
calculations indicate that consumption of local fish from Lake
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Eufaula would contribute about 84% of dietary Hg and that
predicted Hg dose would be 2–3 times higher on average. Actual
fish consumption patterns may be different for anglers who fish in
Lake Eufaula, where fish consumption advisories have been issued
for six fish species, although compliance with and awareness of
fish consumption advisories may be low among freshwater anglers
(Ney and Ney, 2008). In our study, about half of participants said
they were aware of fish consumption advisories in Oklahoma,
while less than a third said they followed them. Similarly, using
average THgfish across lakes throughout Oklahoma (Oklahoma
Department of Environmental Quality, unpublished data), local
fish were estimated to contribute 86% of Hg intake for freshwater
anglers and their families. These calculations indicate that anglers
in other watersheds more impacted by Hg may have much higher
Hg exposures and higher Hg contributions from local fish.

One strength of our study was the use of watershed-specific
THg concentrations from locally-caught fish, of which ∼25% were
donated by community members and study participants. Thus, our
assessment is highly relevant to the local population. However, Hg
exposure estimates are very sensitive to THgfish, and using single-
point estimates for calculating Hg intake does not account for
variability in THgfish. For instance, THgfish may fluctuate according
to changes in Hg biogeochemical cycling within the watershed,
fish growth rates, and the types and Hg content of the fish prey.
Furthermore, some of our THgfish values may have been higher
than fish typically consumed by study participants because volun-
teers may have chosen to donate relatively large fish, which tend
to have higher THg, from a limited number of locations. This
potential bias may explain our overestimation of Hg intake,
although our average concentrations for largemouth bass, spotted
bass, and white bass were below concentrations reported by
Oklahoma Department of Environmental Quality for Grand Lake
(unpublished data).

Another strength of our study was the inclusion of nearly equal
numbers of male and female participants, including 33 husband–
wife pairs. In general, male participants had significantly higher
THghair than female participants, after controlling for BMI and FCR.
Among husband–wife pairs, both FCR and THghair were highly
correlated between husbands and wives within the same house-
hold. Husband's THghair was on average 40% higher than in their
wives, while their weight-normalized FCR was 32% lower. This
suggests that the gender difference in THghair is more closely
related to the dietary composition rather than overall FCR. Overall,
female participants tended to eat a smaller proportion of high Hg
fish, such as flathead catfish and largemouth bass (9.6% vs. 6.8%,
p¼0.04). This is consistent with a recent U.S. EPA study that
showed while overall fish consumption in women has been
constant over the past decade, Hg exposure has decreased 34%
(U.S. EPA, 2013), suggesting that women are heeding recommen-
dations to eat lower Hg fish. Moreover, physiological factors such
as protective metabolism in females may have also played a role,
as suggested in studies in the Amazon (Ashe, 2012; Barbosa et al.,
2001).

Nevertheless, the high correlation between men and women
and frequent sharing of local fish suggest that in communities
where male anglers have high Hg exposures, their spouses or
children, who are often not included in exposure studies, may also
be at risk. Compared to other female participants, women whose
husband or domestic partner was an angler had higher average
THghair (0.21 μg/g vs. 0.14 μg/g, po0.001) and overall FCR (63 g/d
vs. 38 g/d, p¼0.06), while there was no significant difference
between men whose wives were anglers and other male partici-
pants. This indicates that women living with an angler tend to
consume more fish and may be exposed to more Hg than women
in general. Similar trends have been found in mothers and children
who lived with a licensed sport-fish angler in a multi-state survey
(Imm et al., 2007).

In addition to gender, we also found that THghair was associated
with age, an effect found in some studies of anglers (e.g., Lincoln
et al., 2011), but not others (Knobeloch et al., 2007). THghair was
positively associated with age among our participants, and this
increase may be due to differences in lifestyle or fish consumption
patterns as a function of age (Dumont et al., 1998). Compared to
younger participants (r51 years old, the median age), our older
participants (451 years) fished more often (11 times vs. 7 times in
previous three months, p¼0.01), and ate more local fish (72% vs.
64%, p¼0.04). In addition, the association between THghair and age
could be due to long-term Hg accumulation in human body
through chronic exposure (Laks, 2009).

Education was also a significant predictor of THghair, with
higher THghair in people with college or post-graduate degrees.
Other studies have observed a similar increase in Hg exposure
with education level (e.g., Lincoln et al., 2011, Cole et al., 2004),
while Burger et al. (1999) saw higher FCRs in anglers with less
than a high school education or at least some college than in
anglers with only a high school degree. Among our participants,
higher education or socioeconomic status may be associated with
a shift in preference or ability to afford non-local, high Hg fish
species such as albacore or fresh tuna. Compared to high school
graduates or those who did not finish college, the college gradu-
ates in our study ate a greater proportion of albacore and fresh
tuna (5.7% vs. 2.0%, p¼0.002). Participants with more education
may also be more aware of the health benefits of fish (Burger et al.,
1999).

While American Indians often have high rates of fish consump-
tion through practice of traditional fishing activities (Burger and
Gochfeld, 2011), American Indian participants in our study did not
have higher FCR or THghair than Caucasian participants. Many
reported anecdotally that they do not actively practice tribal
traditions. The local American Indian population is well-integrated
into the broader community and thus less likely to have unique
exposure patterns.

The longitudinal component of our study provides a unique
and more integrated assessment of year-round fish consumption
and Hg exposure. The observed seasonal variability in THghair and
FCR highlights the importance of a repeated approach in capturing
MeHg exposure and fish consumption patterns. For most partici-
pants, THghair was highest in summer and lowest in winter, while
reported fish consumption was lowest in the fall. The reason for
this lag is unknown. One possibility is that participants were more
likely to report their most recent fish consumption when asked to
recall over three months, since recent events are more accurately
recalled and more likely to shape retrospection (Reis and Gable,
2000). Thus, FFQs completed in the fall may match more closely
hair samples collected in the winter, since the hair samples
represent exposure 1–3 months prior to collection. Furthermore,
while the anglers in this study reported the most fishing trips in
spring, many also reported freezing their catch for later, so FCRs
may be less variable than expected based on fishing behavior
alone. Meanwhile, seasonality in Hg exposure is influenced by
multiple factors, including seasonal shifts in fishing activities and
dietary composition, recall and reporting inaccuracies over time,
and temporal variations in THgfish. The potential for seasonal
fluctuations also limits direct comparisons of our results, which
are integrated over a year, to results from other studies of anglers
that often survey anglers during active fishing months.

Our results suggest that participation in the study and report-
back of hair testing results may have changed the fish consump-
tion patterns of some participants. Participants with high THghair
at their first visit, especially those above 1.1 μg/g, generally
showed lower levels at subsequent visits (Fig. S6a), regardless of
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which season they enrolled. A quantile regression of THghair
(Fig. S6b) showed a significant decreasing trend as a function of
visit number in participants with the top 10% and 4% of THghair
values (corresponding to THghair above 0.58 μg/g and 1.1 μg/g,
respectively, at the first visit). Within these participants, THghair
dropped on average 0.06 μg/g (p¼0.03, 95% CI: 0.007–0.11 μg/g)
and 0.18 μg/g (p¼0.003, 95%CI: 0.06–0.30 μg/g) in each subse-
quent visit, respectively. Among 10 participants who had hair
Hg41.1 μg/g at their first two visits, only 4 were still above 1.1 μg/
g at their last visit.

These changes are consistent with interactions between study
team members and participants and with qualitative responses to
questions on the FFQ. Anecdotally, six of 11 participants with a hair
Hg result above 1.1 μg/g directly contacted local study team
members (or for one participant, indirectly through a spouse
who was also above the guideline) to discuss their results and
seek additional information. Study team members made sugges-
tions to eat smaller fish and/or select lower Hg fish. All partici-
pants, regardless of their hair mercury levels, were asked a
question on their fifth (final) FFQ to assess whether they had
changed their fish consumption patterns based on their involve-
ment in the study. Among 120 participants who answered this
question (80% of study population), 19 reported a change in fish
consumption frequency, of whom seven ate fish more frequently,
five ate fish less frequently, and another three switched to smaller
fish. These responses suggest that report-back of initial results in
our study led to reductions in Hg exposure in participants with
high THghair as well as increases in fish consumption in those with
low THghair through report-back of the hair testing results.
Previous studies have also found that reporting the results of hair
mercury testing, along with suggestions for reducing MeHg
exposure, can reduce the proportion of fish consumers with hair
Hg above the EPA guideline (Knobeloch et al., 2011).

Despite the dominance of saltwater species in the U.S. domestic
market (Carrington et al., 2004) and Hg intake of the U.S. general
population (Sunderland, 2007), local freshwater fish contribute
the majority of fish consumption and Hg exposure in our study
population despite relatively low Hg concentrations in local fish.
Since water bodies closer to CFPPs generally receive greater
atmospheric Hg deposition (Carpi, 1997), reductions in Hg emis-
sions from CFPPs throughout the U.S. could reduce Hg exposure in
many communities that live in close proximity to the plants, in
addition to reducing the global mercury pool. Fish consumption
advisories, especially those targeting specific water bodies or
communities, need to take into account these unique dietary
patterns of the local population. As more research on region-
specific sources of Hg exposure emerges, environmental health
authorities need to consider regional and population specific
strategies to protect public health.
5. Conclusions

We found that consumption of locally-caught freshwater fish
was the primary source of methylmercury exposure in a rural,
low-income population of primarily anglers and their families. Hg
exposure, as assessed by hair Hg, was significantly associated with
consumption of local fish, and increased as functions of age and
reliance on local fish. Women had lower dietary Hg exposure
relative to men, although women living with an angler ate more
fish and had higher hair Hg than women who did not. Since our
study population may be representative of anglers in other rural,
inland communities where consumption of local freshwater fish is
common, our results suggest that efforts to evaluate benefits of Hg
pollution control measures should consider dietary patterns
among anglers who fish in local freshwater bodies. While our
participants ate more fish on average than the general U.S.
population, hair Hg levels were not elevated, demonstrating that
eating low mercury fish can provide the health benefits of fish
without excessive Hg exposure. Our results also highlight the
complexity of associations between fish consumption and Hg
exposure and suggest that future exposure studies should address
potential seasonal variability.
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